Background
The most common post-surgical complication of tetralogy of Fallot (TOF) is pulmonary regurgitation (PR) which can lead to right ventricle (RV) dysfunction/failure. Cardiac magnetic resonance (CMR) is the imaging modality of choice to follow-up a repaired TOF. However, the conventional two-dimensional phase-contrast (2D-PC) flow usually underestimates PR as well as the pulmonary peak systolic velocity (PSV). Recently, four-dimensional (4D) CMR flow is introduced for more accurate quantitative flow assessment. This work aimed to compare between 4D-CMR and 2D-PC flow across the main (MPA), right (RPA), and left (LPA) pulmonary arteries (PAs) in surgically corrected TOF patients.
Results
This study was conducted on 20 repaired TOF patients (range 3–9 years, 50% males). All patients had CMR exam on 1.5T scanner. 4D-CMR and 2D-PC flows were obtained at the proximal segments of the MPA, RPA, and LPA. The stroke volume index (SVI), regurgitation fraction (RF), and PSV measured by 4D-CMR were compared to 2D-PC flow. The SVI across the PAs was nearly similar between both methods (P = 0.179 for MPA, 0.218 for RPA, and 0.091 for LPA). However, the RF was significantly higher by 4D-CMR in comparison to 2D-PC flow (P = 0.027 for MPA, 0.039 for RPA, and 0.046 for LPA). The PSV as well was significantly higher by 4D-CMR flow (P = 0.003 for MPA, < 0.001 for RPA, and 0.002 for LPA). The Bland-Altman plots showed a good agreement between 4D-CMR and 2D-PC flow for the SVI, RF, and PSV across the pulmonary arteries.
Conclusion
A good agreement existed between the two studied methods regarding pulmonary flow measurements. Because of its major advantage of performing a comprehensive flow assessment in a shorter time, 4D-CMR flow plays an important role in the assessment of patients with complex CHD especially in the pediatric group.