Four‐dimensional (4D) printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D‐printing technology offers remarkable benefits in controlling the geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements on 4D printing using various types of materials and different additive manufacturing techniques is presented. The state‐of‐the‐art strategies implemented in harnessing various 4D‐printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.This article is protected by copyright. All rights reserved