Analyses of fine-grained rocks like shales, cherts, and specifically chalk are challenging with regards to spatial resolution. We propose a “toolbox” to understand mineralogical alteration in chalk, especially those induced by non-equilibrium fluids or polymers and silicates during production of hydrocarbons. These data are fundamental in experiments related to improved/enhanced oil recovery (IOR/EOR) research with the aim to increase hydrocarbon production in a sustainable and environmentally friendly process. The ‘toolbox’ methods analyse rock–fluid or polymer–rock interaction and can be applied to any fine-grained rock type. In our ‘toolbox’, we include methods for routine analysis and evaluate the economic side of the usage together with the complexity of application and the velocity of data acquisition. These methods are routine methods for identification and imaging of components at the same time by chemical or crystallographic means and here applied to petroleum geology. The ‘toolbox’ principle provides a first workflow to develop a road map with clear focus on objectives for maximizing EOR. Most importantly, the methods provide a robust dataset that can identify mineralogical properties and alterations in very fine-grained rocks over several scales (nanometer-decimeter).