Inherent poor stability of perovskite nanocrystals (NCs) is the main impediment preventing broad applications of the materials. Here, TiO 2 shell coated CsPbBr 3 core/shell NCs are synthesized through the encapsulation of colloidal CsPbBr 3 NCs with titanium precursor, followed by calcination at 300 °C. The nearly monodispersed CsPbBr 3 /TiO 2 core/shell NCs show excellent water stability for at least three months with the size, structure, morphology, and optical properties remaining identical, which represent the most water-stable inorganic shell passivated perovskite NCs reported to date. In addition, TiO 2 shell coating can effectively suppress anion exchange and photodegradation, therefore dramatically improving the chemical stability and photostability of the core CsPbBr 3 NCs. More importantly, photoluminescence and (photo)electrochemical characterizations exhibit increased charge separation efficiency due to the electrical conductivity of the TiO 2 shell, hence leading to an improved photoelectric activity in water. This study opens new possibilities for optoelectronic and photocatalytic applications of perovskites-based NCs in aqueous phase.