Highly efficient perovskite QLEDs can be realized when QD films possess two crucial synergistic parameters: highly luminescent features and effective electric transport properties. Regarding the emissive properties of QD films, although long organic ligands perfectly passivated the QD's surface and endowed ink with the near-unity luminescent properties with a PLQY approaching 100%, [11,12] the films generally exhibited a relatively low PLQY of about 40% due to the formation of nonradiative recombination centers. This phenomenon results from the dynamic characteristic of the bonding between the QD's surface and organic capping ligands, leading to the mismatched ligands during the film-forming process. [13,14] Meanwhile, these ligands act as electrically insulating layers on the QD's surface resulting in inefficient carrier injection and transportation, [15,16] which are detrimental to device performance. To enhance the electric properties of QD films, much attention [17,18] has been devoted to the development of ligand strategies that minimize the interparticle spacing. For example, Li et al. demonstrated an effective enhancement in electrical properties and EQE of CsPbBr 3 QLEDs through the control of surface ligand density. [9] Through ligand-exchange strategies, [8,19] a relatively short (C12) ligand, didodecyl dimethyl ammonium bromide (DDAB), was used to enhance device performance, obtaining an EQE of 8.73% under an effective washing process. Unfortunately, these methods are still based on long organic ligands, which cannot render the QD solid with ideal carrier injection and transportation features. Thus, it is significantly crucial to find an effective and feasible strategy to control the surface state of perovskite QDs, which could guarantee the high exciton recombination and carrier injection in constructing high-performance electroluminescent (EL) devices.Inorganic ligands with less space separation among particles could effectively enhance the electrical properties of QD films. [20,21] Meanwhile, they also improved the PL features through the reduce of the defect-related nonradiative recombination, which has been proven in traditional QDs. [22][23][24][25] For example, the halide-related ligands have improved the luminescent feature and radiative recombination in Cd-based QDs, which was realized by the ligand-exchange process. [20,26,27] But such a strategy is not feasible for perovskite QDs because they Perovskite quantum dots (QDs) with high photoluminescence quantum yields (PLQYs) and narrow emission peak hold promise for next-generation flexible and high-definition displays. However, perovskite QD films often suffer from low PLQYs due to the dynamic characteristics between the QD's surface and organic ligands and inefficient electrical transportation resulting from long hydrocarbon organic ligands as highly insulating barrier, which impair the ensuing device performance. Here, a general organic-inorganic hybrid ligand (OIHL) strategy is reported on to passivate perovskite QDs for highly efficient el...