2435wileyonlinelibrary.com
IntroductionQuantum dots (QDs), combined with unique optical, electrical properties and solution processed functional applications, have been studied intensively for decades. [ 1,2 ] Recently, Kovalenko and co-workers and Li and co-workers developed CsPbX 3 (X = Cl, Br, I) inorganic perovskite quantum dots (IPQDs), which exhibited ultrahigh photoluminescence (PL) quantum yields (QYs), lowthreshold lasing, and multicolor electroluminescence. However, the usual synthesis needs high temperature, inert gas protection, and localized injection operation, which are severely against applications. Moreover, the so unexpectedly high QYs are very confusing. Here, for the fi rst time, the IPQDs' roomtemperature (RT) synthesis, superior PL, underlying origins and potentials in lighting and displays are reported. The synthesis is designed according to supersaturated recrystallization (SR), which is operated at RT, within few seconds, free from inert gas and injection operation. Although formed at RT, IPQDs' PLs have QYs of 80%, 95%, 70%, and FWHMs of 35, 20, and 18 nm for red, green, and blue emissions. As to the origins, the observed 40 meV exciton binding energy, halogen self-passivation effect, and CsPbX 3 @X quantumwell band alignment are proposed to guarantee the excitons generation and high-rate radiative recombination at RT. Moreover, such superior optical merits endow them with promising potentials in lighting and displays, which are primarily demonstrated by the white light-emitting diodes with tunable color temperature and wide color gamut.