Alpha-synuclein is one of several key factors in the regulation of nerve activity. It is striking that single-or multiplepoint mutations in the 140-amino-acid-long protein can change its structure, which leads to the protein's aggregation and fibril formation (which is associated with several neurodegenerative diseases, e.g., Parkinson's disease). We recently demonstrated that a single nanometer-scale pore can identify proteins based on its ability to discriminate between protease-generated polypeptide fragments. We show here that a variation of this method can readily discriminate between the wild-type alpha synuclein, a known deleterious point mutation of the glutamic acid at position 46 replaced with a lysine (E46K), and post-translational modifications (i.e., tyrosine Y39 nitration and serine 129 phosphorylation).