Cystinuria is a purely renal, rare genetic disease caused by mutations in cystine transporter genes and characterized by defective cystine reabsorption leading to kidney stones. In 14% of cases, patients undergo nephrectomy, but given the difficulty to predict the evolution of the disease, the identification of markers of kidney damage would improve the follow-up of patients with a higher risk. The aim of the present study is to develop a robust, reproducible, and noninvasive methodology for proteomic analysis of urinary exosomes using high resolution mass spectrometry. A clinical pilot study conducted on eight cystinuria patients versus 10 controls highlighted 165 proteins, of which 38 were up-regulated, that separate cystinuria patients from controls and further discriminate between severe and moderate forms of the disease. These proteins include markers of kidney injury, circulating proteins, and a neutrophil signature. Analysis of selected proteins by immunobloting, performed on six additional cystinuria patients, validated the mass spectrometry data. To our knowledge, this is the first successful proteomic study in cystinuria unmasking the potential role of inflammation in this disease. The workflow we have developed is applicable to investigate urinary exosomes in different renal diseases and to search for diagnostic/prognostic markers. Data are available via ProteomeXchange with identifier PXD001430.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.