This paper proposes an adaptive charge sharing (ACS) method for reducing power consumption in liquid crystal displays (LCDs). Our ACS method involves calculating the power consumption of all data lines assuming the charge is shared and analyzing the analog characteristics of the data transitions. With conventional CS, charge is shared between data lines only when the polarities of data signals change. Our ACS method selectively shares charge even when no polarity change occurs, but only if CS provides an overall reduction in power consumption. To compare the performance of ACS and conventional CS, we applied the ACS method to common inversion methods, namely, column, two-dot, and Z inversion. Our simulation results demonstrate that the ACS method can effectively reduce power consumption, especially with the column and Z inversion methods. The average power consumption of the ACS method with column and Z inversion was 87.7% and 84.7%, respectively, of the conventional CS power consumption.