2001
DOI: 10.1023/a:1011983313249
|View full text |Cite
|
Sign up to set email alerts
|

Untitled

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
17
0
1

Year Published

2005
2005
2022
2022

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 30 publications
(18 citation statements)
references
References 44 publications
0
17
0
1
Order By: Relevance
“…On the other hand, there are points with any number of frequencies arbitrarily close to any point in the phase space. Other solutions with m < n frequencies can be constructed using the reduction theory for hyperelliptic functions 46 . Note also that degenerate solutions with m frequencies contain ones with fewer frequencies and can be further reduced to m − 1, m − 2 etc.…”
Section: Degenerate Solutionsmentioning
confidence: 99%
“…On the other hand, there are points with any number of frequencies arbitrarily close to any point in the phase space. Other solutions with m < n frequencies can be constructed using the reduction theory for hyperelliptic functions 46 . Note also that degenerate solutions with m frequencies contain ones with fewer frequencies and can be further reduced to m − 1, m − 2 etc.…”
Section: Degenerate Solutionsmentioning
confidence: 99%
“…Редукция может быть описана непосредственно в терминах римановой матрицы периодов (см. [31]; недавнее изложение и приложения даны в [32], [33]). Будем говорить, что риманова матрица Π = A B размера 2g × g допускает редукцию, если существует числовая комплексная матрица λ размера g × g 1 максимального ранга, числовая комплексная матрица Π 1 размера 2g 1 × g 1 и целочисленная матрица M размера 2g × 2g 1 также максимального ранга такие, что…”
Section: )unclassified
“…From Theorem 5.9, we obtain the decompositions of the functions ℘ 1,1 , ℘ 1,3 − α 2 β 2 , and ℘ 3,3 into the products of meromorphic functions (Remark 5.10), a solution of the KdV-hierarchy in terms of functions constructed by the elliptic functions ℘ E 1 and ℘ E 2 (Remark 5.11), and the expressions of the coordinates of the Kummer surface in terms of the Weierstrass elliptic functions ℘ E 1 and ℘ E 2 (Remark 5.12). In Section 6, we compare our results with the results of [6,19,25].…”
Section: Introductionmentioning
confidence: 99%
“…99, 100], [25] are described in terms of coordinates on the Kummer surfaces. In this paper, by an approach different from [6,7,17,19,25], we derive relationships between the hyperelliptic functions associated with the curve of genus 2 and the Weierstrass elliptic functions.…”
Section: Introductionmentioning
confidence: 99%