The objective of this study was to determine the dose-dependent response of one-carbon metabolite (OCM: methionine, choline, folate, and vitamin B12) supplementation on heifer dry matter intake on fixed gain, organ mass, hematology, cytokine concentration, pancreatic and jejunal enzyme activity, and muscle hydrogen peroxide production. Angus heifers (n = 30; BW = 392.6 ± 12.6 kg) were individually fed and assigned to one of five treatments: 0XNEG: Total mixed ration (TMR) and saline injections at d 0 and 7 of the estrous cycle, 0XPOS: TMR, rumen protected methionine (MET) fed at 0.08% of the diet dry matter, rumen protected choline (CHOL) fed at 60 g/d, and saline injections at d 0 and 7, 0.5X: TMR, MET, CHOL, 5-mg B12, and 80-mg folate injections at d 0 and 7, 1X: TMR, MET CHOL, 10-mg vitamin B12, and 160-mg folate at d 0 and 7, and 2X: TMR, MET, CHOL, 20-mg vitamin B12, and 320-mg folate at d 0 and 7. All heifers were estrus synchronized but not bred, and blood samples were collected on d 0, 7, and at slaughter (d 14) during which tissues were collected. By design, heifer ADG did not differ (P = 0.96). Spleen weight and uterine weight were affected cubically (P = 0.03) decreasing from 0XPOS to 0.5X. Ovarian weight decreased linearly (P < 0.01) with increasing folate and B12 injection. Hemoglobin and hematocrit percentage were decreased (P < 0.01) in the 0.5X treatment compared with all other treatments. Plasma glucose, histotroph protein, and pancreatic α-amylase were decreased (P ≤ 0.04) in the 0.5X treatment. Heifers on the 2X treatment had greater pancreatic α-amylase compared with 0XNEG and 0.5X treatment. Interleukin-6 in plasma tended (P = 0.08) to be greater in the 0XPOS heifers compared with all other treatments. Lastly, 0XPOS-treated heifers had reduced (P ≤ 0.07) hydrogen peroxide production in muscle compared with 0XNEG heifers. These data imply that while certain doses of OCM do not improve whole animal physiology, OCM supplementation doses that disrupt one-carbon metabolism, such as that of the 0.5X treatment, can induce a negative systemic response that result in negative effects in both the dam and the conceptus during early gestation. Therefore, it is necessary to simultaneously establish an optimal OCM dose that increases circulating concentrations for use by the dam and the conceptus, while avoiding potential negative side effects of a disruptive OCM, to evaluate the long-term impacts of OCM supplementation of offspring programming.