This study examined 1) the plasma taurine response to acute oral taurine supplementation (T), and 2) the effects of 7 days of T on muscle amino acid content and substrate metabolism during 2 h of cycling at approximately 60% peak oxygen consumption (VO2peak). In the first part of the study, after an overnight fast, 7 volunteers (28+/-3 yr, 184+/-2 cm, 88.0+/-6.6 kg) ingested 1.66 g oral taurine doses with breakfast (8 AM) and lunch (12 noon), and blood samples were taken throughout the day. In the second part of the study, eight men (22+/-1 yr, 181+/-1 cm, 80.9+/-3.8 kg, 4.21+/-0.16 l/min VO2peak) cycled for 2 h after 7 days of placebo (P) ingestion (6 g glucose/day) and again following 7 days of T (5 g/day). In the first part of the study, plasma taurine was 64+/-4 microM before T and rose rapidly to 778+/-139 microM by 10 AM and remained elevated at noon (359+/-56 microM). Plasma taurine reached 973+/-181 microM at 1 PM and was 161+/-31 microM at 4 PM. In the second part of the study, seven days of T had no effect on muscle taurine content (mmol/kg dry muscle) at rest (P, 44+/-15 vs. T, 42+/-15) or after exercise (P, 43+/-12 vs. T, 43+/-11). There was no difference in muscle glycogen or other muscle metabolites between conditions, but there were notable interaction effects for muscle valine, isoleucine, leucine, cystine, glutamate, alanine, and arginine amino acid content following exercise after T. These data indicate that 1) acute T produces a 13-fold increase in plasma taurine concentration; 2) despite the ability to significantly elevate plasma taurine for extended periods throughout the day, 7 days of T does not alter skeletal muscle taurine content or carbohydrate and fat oxidation during exercise; and 3) T appears to have some impact on muscle amino acid response to exercise.
People who avoid eating animals tend to share their homes with animal companions, and moral dilemma may arise when they are faced with feeding animal products to their omnivorous dogs and carnivorous cats. One option to alleviate this conflict is to feed pets a diet devoid of animal ingredients—a ‘plant-based’ or ‘vegan’ diet. The number of pet owners who avoid animal products, either in their own or in their pets’ diet, is not currently known. The objective of this study was to estimate the number of meat-avoiding pet owners, identify concerns regarding conventional animal- and plant-based pet food, and estimate the number of pets fed a plant-based diet. A questionnaire was disseminated online to English-speaking pet owners (n = 3,673) to collect data regarding pet owner demographics, diet, pet type, pet diet, and concerns regarding pet foods. Results found that pet owners were more likely to be vegetarian (6.2%; 229/3,673) or vegan (5.8%; 212/3,673) than previously reported for members of the general population. With the exception of one dog owned by a vegetarian, vegans were the only pet owners who fed plant-based diets to their pets (1.6%; 59/3,673). Of the pet owners who did not currently feed plant-based diets but expressed interest in doing so, a large proportion (45%; 269/599) desired more information demonstrating the nutritional adequacy of plant-based diets. Amongst all pet owners, the concern most commonly reported regarding meat-based pet foods was for the welfare of farm animals (39%; 1,275/3,231). The most common concern regarding strictly plant-based pet foods was regarding the nutritional completeness of the diet (74%; 2,439/3,318). Amongst vegans, factors which predicted the feeding of plant-based diets to their pets were concern regarding the cost of plant-based diets, a lack of concern regarding plant-based diets being unnatural, and reporting no concern at all regarding plant-based diets for pets. Given these findings, further research is warranted to investigate plant-based nutrition for domestic dogs and cats.
The metabolism of sulfur amino acids, methionine and cysteine, has been linked to several key aspects of human health and cellular function. In addition, the metabolism of dietary amino acids by the gastrointestinal tract is nutritionally important for normal function. In the case of sulfur amino acids (SAAs), in vivo, stable isotope studies in adults suggest that the splanchnic tissues utilize as much as 30-44% of the dietary methionine and cysteine. Similarly, the dietary methionine requirement is 30% lower in total parenteral nutrition (TPN)-fed piglets, a condition in which dietary nutrients largely bypass intestinal metabolism. These data suggest that intestinal metabolism of methionine is substantial, yet the intestinal metabolic fate of dietary methionine is largely unknown. Dietary cysteine likely plays a key role in intestinal epithelial antioxidant function as a precursor for glutathione. Moreover, cysteine and glutathione may also regulate epithelial cell proliferation via modulation of redox status. Recent evidence indicates that transformed colonic epithelial cells are capable of methionine transmethylation and transsulfuration. This review discusses the evidence of intestinal SAA metabolism and how this affects nutrient requirements and epithelial function.
The requirements for the sulfur amino acids (SAA), methionine (Met) and cysteine (Cys), have seldom been determined in neonates and to our knowledge have not previously been determined directly in parenterally fed neonates. The sulfur amino acids are catabolized largely in the liver and kidney, and their metabolism by the gut has been studied less frequently. In the present research, the enteral and parenteral Met requirement was determined, without dietary Cys, using the indicator amino acid oxidation (IAAO) technique. Piglets [n = 32, 2 d old, 1.66 +/- 0.13 kg (SD)] received elemental diets containing adequate energy, phenylalanine (Phe) and excess tyrosine, with varied Met concentrations and no Cys. Diets were infused continuously via intravenous or intragastric catheters. Phenylalanine oxidation was determined during a primed, constant infusion of L-[1-(14)C]-Phe, by measuring expired (14)CO(2) and plasma specific radioactivity of Phe. For both parenteral and enteral groups, Phe oxidation (% of dose) decreased linearly (P < 0.01) as Met intake increased, then became low and unchanging. Using breakpoint analysis, the Met requirement was estimated to be 0.42 and 0.29 g/(kg. d) for enteral and parenteral feeding, respectively. Breakpoint analysis using absolute phenylalanine oxidation [ micro mol/(kg. h)] resulted in an estimation of the Met requirement of 0.44 and 0.26 g/(kg. d) for enteral and parenteral feeding, respectively. These data show that the parenteral Met requirement is approximately 69% of the enteral requirement and suggest that extraction of SAA by first-pass splanchnic metabolism may be responsible for this difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.