Apoptotic mechanism induced by 9-HPbD-PDT in AMC-HN-3 cellsSkin phototoxicity is one of the main side effects of photodynamic therapy (PDT). To overcome this problem, some new photosensitizers have been developed with longer absorbance wavelengths and shorter half-life in the body. In this study, we investigated the mechanism of PDT mediated by a new chlorophyll derivative photosensitizer, 9-hydroxypheophorbide α (9-HPbD), on AMC-HN-3 cancer cells. Phototoxicity and apoptosis on AMC-HN-3 cells induced by 9-HPbD was exhibited in a time-and dose-dependent manner. Mitochondria and endoplasmic reticulum (ER) were observed as preferential sites of 9-HPbD accumulation. Photoactivation of 9-HPbD-loaded AMC-HN-3 cells led to a rapid generation of reactive oxygen species (ROS) at 30 min, followed by a loss of mitochondrial membrane potential (MMP) at 2 h, translocation of apoptosisinducing factor (AIF) at 2 h, and the release of cytochrome c at 3 h following PDT. Caspase-12, an important caspase involved in ER-induced apoptosis, and C/EBP homologous protein (CHOP), an ER stress inducible transcription factor, were also upregulated after PDT (3-12 h and 6-12 h, respectively). Subsequently, activation of caspase-9 at 6 h, caspase-3 and PARP at 12 h also occurred in PDT-treated AMC-HN-3 cells.The above observations demonstrate that both mitochondria and ER serve not only as the sites of sensitizer binding, but also the subcellular targets of 9-HPbD-PDT, effective activation of which is responsible for 9-HPbD PDT-induced apoptosis in AMC-HN-3 cells.