We generalize the classical approach of describing the infinitesimal Torelli map in terms of multiplication in a Jacobi ring to the case of quasi-smooth complete intersections in weighted projective space. As an application, we prove that the infinitesimal Torelli theorem does not hold for hyperelliptic Fano threefolds of Picard rank 1, index 1, degree 4, and study the action of the automorphism group on cohomology. The results of this paper are used to prove Lang-Vojta’s conjecture for the moduli of such Fano threefolds in a follow-up paper.