2004
DOI: 10.1155/s1073792804140415
|View full text |Cite
|
Sign up to set email alerts
|

Untitled

Abstract: Onétudie dans ce texte des propriétés de l'ensemble des points rationnels de modèles sur des corps de nombres d'espaces localement symétriques hermitiens. Soit X un domaine symétrique hermitien, Γ un réseau arithmétique et S = Γ \X. Quand Γ est sans point fixe S admet une structure d'espace quasi-projectif lisse et S est une variété hyperbolique. On dispose par ailleurs de modèles de ces variétés sur des corps de nombres.Dans la première partie on explique les propriétés diophantiennes attendues des variétés q… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2010
2010
2024
2024

Publication Types

Select...
4
1
1

Relationship

1
5

Authors

Journals

citations
Cited by 13 publications
(2 citation statements)
references
References 10 publications
0
2
0
Order By: Relevance
“…1.4. When writing this article we were not sure whether the statement about rational points was new, it is not a corollary of [Ull04]. In the final stage of the redaction, Y. Brunebarbe informed us that, if n = 2, it follows from [DimRam15, Theorem 0.3] a paper we were not aware of.…”
Section: Let Us Describe the Content Of This Articlementioning
confidence: 98%
“…1.4. When writing this article we were not sure whether the statement about rational points was new, it is not a corollary of [Ull04]. In the final stage of the redaction, Y. Brunebarbe informed us that, if n = 2, it follows from [DimRam15, Theorem 0.3] a paper we were not aware of.…”
Section: Let Us Describe the Content Of This Articlementioning
confidence: 98%
“…8-9), and therefore (by Lang-Vojta's conjecture) should have only finitely many integral points, i.e., be "arithmetically hyperbolic"; see (Abramovich, 1997, § 0.3) or Javanpeykar (2020); Lang (1986). For evidence on Lang-Vojta's arithmetic conjectures, see (Autissier 2009(Autissier , 2011Corvaja and Zannier 2006;Faltings 1994;Levin 2009;Javanpeykar 2021;Ullmo 2004).…”
Section: Arithmetic Motivationmentioning
confidence: 99%