A New Binding Method (NBM) was used to investigate the characteristics of the specific binding of 125I-omega-conotoxin (omega-CTX) GVIA and 125I-omega-CTX MVIIC to Cav2.1 and Cav2.2 channels captured from chick brain membranes by antibodies against B1Nt (a peptide sequence in Car2.1 and Cav2.2 channels). The results for the NBM were as follows. (1) The ED50 values for specific binding of 125I-omega-CTX GVIA and 125I-omega-CTX MVIIC to Cav2.1 and Cav2.2 channels were about 68 and 60 pM, respectively, and very similar to those (87 and 35 pM, respectively) to crude membranes from chick brain. (2) The specific 125I-omega-CTX GVIA (100 pM) binding was inhibited by omega-CTX GVIA (0.5 nM), dynorphine A (Dyn), gentamicin (Gen), neomycin (Neo) and tobramicin (Tob) (100 microM each), but not by omega-agaconotoxin (Aga) IVA, calciseptine, omega-CTX SVIB, omega-CTX MVIIC (0.5 nM each), PN200-110 (PN), diltiazem (Dil) or verapamil (Ver) (100 microM each). Calmodulin (CaM) inhibited the specific binding in a dose-dependent manner (IC50 value of about 100 microg protein/ml). (3) The specific 125I-omega-CTX MVIIC (60 pM) binding was inhibited by omega-CTX MVIIC, omega-CTX GVIA, omega-CTX SVIB (0.5 nM each), Dyn, Neo and Tob (100 microM, each), but not by omega-Aga IVA, calciseptine (0.5 nM each), PN, Dil, Ver (100 microM each) or 100 microg protein/ml CaM. These results suggested that the characteristics of the specific binding of 125I-omega-CTX GVIA and 125I-omega-CTX MVIIC to Cav2.1 and Cav2.2 channels in the NBM were very similar to those to crude membranes from chick brain, although the IC50 values for CaM and free Ca2+ of CaM were about 33- and 5000-fold higher, respectively, than those for the specific binding of 125I-omega-CTX GVIA and 125I-omega-CTX MVIIC to crude membranes.