It is well known that morphological and functional changes during neural differentiation sometimes accompany the expression of various voltage-gated ion channels. In this work, we investigated whether the enhancement of sodium current in differentiated neuroblastoma x glioma NG108-15 cells treated with dibutyryl cAMP is related to the expression of voltage-gated sodium channels. The results were as follows. (1) Sodium current density on peak voltage in differentiated cells was significantly enhanced compared with that in undifferentiated cells, as detected by the whole-cell patch clamp method. The steady-state inactivation curve in differentiated cells was similar to that for undifferentiated cells, but a hyperpolarized shift in the activation curve for differentiated cells was observed. The sodium currents of differentiated and undifferentiated cells were completely inhibited by 10(-7) M tetrodotoxin (TTX). (2) The only Na(V) mRNA with an increased expression level during neuronal differentiation was that for NaV1.7, as observed by real-time PCR analysis. (3) The increase in the level of NaV1.7 alpha subunit expression during neuronal differentiation was also observed by immunocytochemistry; in particular, the localization of NaV1.7 alpha subunits on the soma, varicosities and growth cone was significant. These results suggest that the enhancement of TTX-sensitive sodium current density in differentiated NG108-15 cells is mainly due to the increase in the expression of the TTX-sensitive voltage-gated Na+ channel, NaV1.7.
Delirium and the need for family and decision-making support were underrecognized by hospital staff. PCT intervention for CRF and depression was often withheld because of very late referral. Appropriate timing of PCT consultations is important. Providing educational opportunities for hospital staff to comprehensively assess patient's multidimensional distress is needed.
We have synthesized -LiFe 1Àx In x O 2 (x ¼ 0, 0.001, 0.01, 0.05, and 0.1) powders by calcination of Li 2 CO 3 , Fe 2 O 3 and In 2 O 3 mixtures. In X-ray diffraction, the sample with larger x value showed larger lattice constant of the cubic NaCl-type structure. Aside from electron diffraction patterns of the cubic unit cell with diffuse scattering for both the samples, the x ¼ 0 sample demonstrated a doubled structure of the cubic unit cell with wavy diffuse scattering, though the x ¼ 0:1 sample exhibited the doubled structure with less intensive diffuse scattering. In cooling history-dependent dc susceptibilities, the bifurcation point of the x ¼ 0 sample was %90 K, and it lowered from 87 to 44 K with increasing the x value from 0.001 to 0.1. Dilution of -LiFeO 2 with nonmagnetic In 3þ ions suppressed chemical cluster formation at room temperature and reduced temperature of ferromagnetic cluster formation.
Characteristics for the up-regulated response in the concentration of intracellular calcium ion ([Ca(2+)]( i )) and in the sodium ion (Na(+)) current by serotonin (5-HT) were investigated in differentiated neuroblastoma x glioma hybrid NG108-15 (NG) cells. The results for the changes in [Ca(2+)]( i ) by 5-HT were as follows, (1) The 5-HT-induced Ca(2+) response was inhibited by 3 x 10(-9) M tropisetron (a 5-HT(3) receptor blocker), but not by other types of 5-HT receptor blockers; (2) The 5-HT-induced Ca(2+) response was mainly inhibited by calciseptine (a L-type Ca(2+) blocker), but not by other types of Ca(2+) channel blockers or 10(-7) M TTX (a voltage-sensitive Na(+) channel blocker); (3) When the extracellular Na(+) was removed by exchange with choline chloride or N-methyl-D-glucamine, the 5-HT-induced Ca(2+) response was extremely inhibited. The results for the 5-HT-induced Na(+) current by the whole cell patch-clamp technique were as follows, (1) The 5-HT-induced Na(+) current in differentiated cells was significantly larger than that in undifferentiated cells; (2) The ED(50) value for 5-HT-induced Na(+) current in undifferentiated and differentiated cells was almost the same, about 4 x 10(-6) M each other; (3) The 5-HT-induced Na(+) current was completely blocked by 3 x 10(-9) M tropisetron, but not by other 5-HT receptor antagonists and 10(-7) M TTX. These results suggested that 5-HT-induced Ca(2+) response in differentiated NG cells was mainly due to L-type voltage-gated Ca(2+) channels allowing extracellular Na(+) to enter via 5-HT(3) receptors, but not through voltage-gated Na(+) channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.