Monolithically integrating the energy supply unit on a silicon integrated circuit (IC) requires the development of a thin-film solid-state battery compatible with silicon IC fabrication methods, materials, and performance. We have envisioned materials that can be processed in a silicon fabrication environment, thus bringing local stored energy to silicon ICs. By incorporating the material directly onto the silicon wafer, the economic parallelism that silicon complementary metal-oxide-semiconductor (CMOS) technology has enjoyed can be brought to power incorporation in each IC on a processed wafer. It is natural to look first towards silicon CMOS materials, and ask which materials need enhancement, which need replacement, and which can be used “as is.” In this study, we begin by using two existing CMOS materials and one unconventional material for the construction of a source of electric power. We have explored the use of thermally grown silicon dioxide (SiO2) as thin as 9nm acting as an electrolyte material candidate in a solid-state power cell integrated on silicon. Other components of the thin-film cell consisted of rf-sputtered lithium cobalt oxide (LiCoO2) as the cathode and highly doped n-type polycrystalline silicon (polysilicon) grown by low-pressure chemical-vapor deposition as the anode. All structures were fabricated using conventional microelectronics fabrication technology. The charge and discharge behaviors of the LiCoO2∕SiO2∕polysilicon cells were studied. On the basis of the impedance measurements an equivalent circuit model of an ultrathin cell was inferred, and its microstructure was characterized by electron microscopy imaging. In spite of its high series resistance (∼4×107Ω), we have shown that an ultrathin layer of an as-deposited Li-free SiO2 is an interesting candidate for an electrolyte or controllable barrier layer in lithium-ion-based devices.