GaAs/Al x Ga (1−x) As quantum well lasers have been demonstrated via organometallic chemical vapor deposition on relaxed graded Ge/GexSi(1−x) virtual substrates on Si. A number of GaAs/Ge/Si integration issues including Ge autodoping behavior in GaAs, reduced critical thickness due to thermal expansion mismatch, and complications with mirror facet cleaving have been overcome. Despite unoptimized laser structures with high series resistance and large threshold current densities, surface threading dislocation densities for GaAs/AlGaAs lasers on Si substrates as low as 2×106 cm−2 permitted continuous room-temperature lasing at a wavelength of 858 nm. The laser structures are uncoated edge-emitting broad-area devices with differential quantum efficiencies of 0.24 and threshold current densities of 577 A/cm2. Identical devices grown on commercial GaAs substrates showed similar behavior. This comparative data agrees with previous measurements of near-bulk minority carrier lifetimes in GaAs grown on Ge/GeSi/Si substrates.
We have determined the critical cracking thickness, or the thickness beyond which crack formation is favored, in GaAs films grown on Si and SiGe virtual substrates analytically and experimentally. The analytical model predicts a critical cracking thickness proportional to the biaxial modulus and the crack resistance of the GaAs film, and inversely proportional to the square of the thermal stress and a nondimensional crack resistance number Z. This Z number is determined by the mechanical properties of the GaAs film for a system without substrate damage, and is also determined by the mechanical properties of the substrate for a system with substrate damage. The experimentally determined critical thicknesses were in general greater than the analytically derived values due to the kinetic barriers to crack nucleation, which were not taken into consideration in the models. In addition, we have observed an asymmetric crack array formation, where arrays running in the 〈110〉 substrate off-cut direction are favored. We have also performed finite element modeling of the crack systems to study the evolution of thermal stress around crack planes in the GaAs film.
SiGe-free strained Si on insulator substrates were fabricated by wafer bonding and hydrogen-induced layer transfer of strained Si grown on bulk relaxed Si0.68Ge0.32 graded layers. Raman spectroscopy shows that the 49-nm thick strained Si on insulator structure maintains a 1.15% tensile strain even after SiGe layer removal. The strain in the structure is thermally stable during 1000 °C anneals for at least 3 min, while more extreme thermal treatments at 1100 °C cause slight film relaxation. The fabrication of epitaxially defined, thin strained Si layers directly on a buried insulator forms an ideal platform for future generations of Si-based microelectronics.
This paper studies the effect of the strained silicon thickness on the characteristics of strained silicon MOSFETs on SiGe virtual substrates. NMOSFETs were fabricated on strained silicon substrates with various strained silicon thicknesses, both above and below the strained silicon critical thickness. The low field electron mobility and subthreshold characteristics of the devices were measured. Low field electron mobility is increased by about 1.8 times on all wafers and is not significantly degraded on any of the samples, even for a strained silicon thickness far greater than the critical thickness. From the subthreshold characteristics, however, it is shown that the off-state leakage current is greatly increased for the devices on the wafers with a strained silicon thickness that exceeds the critical thickness. The mechanism of the leakage was examined by using photon emission microscopy. Strong evidence is shown that the leakage mechanism is source/drain electrical shorting caused by enhanced dopant diffusion near misfit dislocations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.