This article reviews the history and current progress in high-mobility strained Si, SiGe, and Ge channel metal-oxide-semiconductor field-effect transistors (MOSFETs). We start by providing a chronological overview of important milestones and discoveries that have allowed heterostructures grown on Si substrates to transition from purely academic research in the 1980’s and 1990’s to the commercial development that is taking place today. We next provide a topical review of the various types of strain-engineered MOSFETs that can be integrated onto relaxed Si1−xGex, including surface-channel strained Si n- and p-MOSFETs, as well as double-heterostructure MOSFETs which combine a strained Si surface channel with a Ge-rich buried channel. In all cases, we will focus on the connections between layer structure, band structure, and MOS mobility characteristics. Although the surface and starting substrate are composed of pure Si, the use of strained Si still creates new challenges, and we shall also review the literature on short-channel device performance and process integration of strained Si. The review concludes with a global summary of the mobility enhancements available in the SiGe materials system and a discussion of implications for future technology generations.
Defect-free germanium has been demonstrated in SiO2 trenches on silicon via Aspect Ratio Trapping, whereby defects arising from lattice mismatch are trapped by laterally confining sidewalls. Results were achieved through a combination of conventional photolithography, reactive ion etching of SiO2, and selective growth of Ge as thin as 450nm. Full trapping of dislocations originating at the Ge∕Si interface has been demonstrated for trenches up to 400nm wide without the additional formation of defects at the sidewalls. This approach shows great promise for the integration of Ge and/or III-V materials, sufficiently large for key device applications, onto silicon substrates.
We show that pure Ge grown selectively on SiO2/Si substrates in 100 nm holes is highly perfect at the top surface compared to conventional Ge lattice-mismatched growth on planar Si substrates. This result is achieved through a combination of interferometric lithography SiO2/Si substrate patterning and ultrahigh vacuum chemical vapor deposition Ge selective epitaxial growth. This “epitaxial necking,” in which threading dislocations are blocked at oxide sidewalls, shows promise for dislocation filtering and the fabrication of low-defect density Ge on Si. Defects at the Ge film surface only arise at the merging of epitaxial lateral overgrowth fronts from neighboring holes. These results confirm that epitaxial necking can be used to reduce threading dislocation density in lattice-mismatched systems.
Metal-organic chemical vapor deposition growth of GaAs on Si was studied using the selective aspect ratio trapping method. Vertical propagation of threading dislocations generated at the GaAs∕Si interface was suppressed within an initial thin GaAs layer inside SiO2 trenches with aspect ratio >1, leading to defect-free GaAs regions up to 300nm in width. Cross-sectional and plan-view transmission electron microscopies were used to characterize the defect reduction. Material quality was confirmed by room temperature photoluminescence measurements. This approach shows great promise for the fabrication of optoelectronic integrated circuits on Si substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.