The review highlights current views and hypotheses on the pathogenetic role of natural and xenoestrogens in the disorders of programming of neuroendocrine regulation of reproduction, alaptation, and various forms of instinctive behavior (reproductive, eating, parental, etc.) in the perinatal period of development of the female brain. Catecholestrogens, which are formed in the brain as a result of sequential metabolic conversions of testosterone, are involved in exogenous or endogenous androgen-induced defeminization of hypothalamic control of ovulation in early female ontogenesis. In the research on female animals with a knocked out gene of alpha-fetoprotein, the protective role of this protein against the possible pathogenic effect of placental estrogens on the developing brain of female fetuses was proved. The damaging effect of phytoestrogens (genistein, coumestrol) in the early postnatal period on the formation of ovulatory cycles has been shown. Evidence from studies in rodents and other animal species, supported by clinical observations, indicate the potential damaging effect of exposure to low levels of environmental xenoestrogens on the developing brain, in particular on its sexual differentiation and the hypothalamic-pituitary-adrenal axis. The potential hazard of the perinatal exposure to low doses of bisphenol A for the formation of estrogen receptors in the hypothalamus and amygdala of the female brain, sexual behavior and ovulation is discussed. Special attention is paid to the possible physiological role of natural estrogens in the formation of the female neuroendocrine system during puberty. It was concluded that in the early stages of female life, estrogens play a different role in the programming of the neuroendocrine system and behavior, depending on the period of individual development.