There are different approaches to reduce the dark current. The ideal but expensive approach is to modify the fabrication process by enhancing the photosensivity of the pixel or reducing the leakage current. However, some circuit and layout techniques reduce or compensate the dark current of standard CMOS processes which is the method considered in this work.In this thesis a multi-branch differential amplifier circuit is proposed to compensate the effect of dark current in CMOS image sensors. In order to obtain a low level sensing application, a T-type switch with low leakage current is used. The new configuration of multiple-input multipleoutput differential amplifier has the advantage of compensating the femto-ampere dark currents of photodiodes. The objective is to improve the sensitivity and the dynamic range of active pixel CMOS image sensors. A prototype is designed and simulated in a standard CMOS 0.18 µm fabrication process from TSMC.