This paper presents a scalable Fully-digital differential analog voltage comparator designed in Semi-Conductor Laboratory (SCL) 180[Formula: see text]nm complementary metal-oxide semiconductor technology. The proposed design is based on a digital design approach and is easily configurable to lower technology nodes. This design methodology makes the circuit less sensitive to process variations and takes fewer design efforts suitable for Systems-on-a-Chips (SOCs) application. The proposed circuit is designed and simulated in Cadence Virtuoso Analog Design Environment at the supply voltage ranging from 1[Formula: see text]V to 1.8[Formula: see text]V. The fully-digital analog voltage comparator has been synthesized using Synopsys Design Vision and auto-placed & auto-routed using Synopsys IC Compiler. This proposed comparator has a resolution of up to 7-bit at a supply voltage of 1.8[Formula: see text]V and a worst-case operating frequency of about 750 MHz at the TT corner. The obtained value of the offset voltage and delay is 0.55[Formula: see text]mV and 0.72 ns, respectively. The simulated results have shown that the power dissipation of the proposed scalable analog voltage comparator is [Formula: see text][Formula: see text]V and [Formula: see text][Formula: see text]V supply voltage, respectively. Also, the RC extracted post-layout simulations have been implemented to verify the performance, which does not affect the results much.