This study deals with the mathematical modeling and numerical simulation of chemical propulsion systems (CPSs). For this, we investigate and summarize a comprehensive collection of the simulation modeling developments of CPSs in academic works, applications, and industrial fields. Then, we organize and analyze the simulation modeling approaches in several ways. After that, we organize differential-algebraic Equations (DAEs) for fundamental mathematical modeling consisting of the governing Equations (ordinary differential equations, ODEs) for the components and other equations derived from several physical rules or characteristics (algebraic equations or phenomenological equations, AEs) and then synthesize and summarize the fundamental structures of analytic mathematical modeling by types (liquid-propellant rocket engines, solid-propellant rocket motors, and hybrid-propellant rocket motors) of CPSs.