High volume acquisition rates are imperative for medical ultrasound imaging applications, such as 3D elastography and 3D vector flow imaging. Unfortunately, despite recent algorithmic improvements, high-volume-rate imaging remains computationally infeasible on known platforms. In this paper, we propose Tetris, a novel hardware accelerator for ultrasound beamforming that enables volume acquisition rates up to the physics limits of acoustic propagation delay. Through algorithmic and hardware optimizations, we enable a streaming system design outclassing previously proposed accelerators in performance while lowering hardware complexity and storage requirements. For a representative imaging task, our proposed system generates physics-limited 13,020 volumes per second in a 2.5W power budget. CCS CONCEPTS • Hardware → Emerging architectures; 3D integrated circuits.;