We propose and experimentally demonstrate a novel technique to generate multi-channel high-speed physical random numbers (PRNs) by taking two chaotic signal outputs from mutually coupled semiconductor lasers (MC-SLs) as entropy sources. First, through controlling the operation parameters of the MC-SL system, two time-delay signature (TDS) suppressed chaotic signals can be obtained. Next, each of these two chaotic signals is sampled by an 8 bit analog-to-digital converter (ADC) with a sampling rate of 10 GHz, and then a bitwise exclusive-OR (XOR) operation on the corresponding bits in samples of the chaotic signal and its time delayed signal is implemented to obtain 8 bit XOR data. Furthermore, through selecting the five least significant bits (LSBs) of 8 bit XOR data to form 5 bit Boolean sequences, two sets of PRN streams with a rate up to 50 Gbits s −1 are generated and successfully pass the NIST statistical tests. Finally, merging these two sets of 50 Gbits s −1 PRN streams by an interleaving operation, another set of the 100 Gbits s −1 PRN stream, which meets all the quality criteria of NIST statistical tests, is also acquired.