Abstract-This work reports a novel approach to extending the bandwidth of single stage distributed amplifiers (SSDAs). The three-stepped technique involves scaling down the inductance on the input artificial transmission line (ATL); creating a high frequency resonance peak by the addition of shunt capacitance on the input ATL; and compensating for the resulting increased reflection with adapted negative resistance attenuation compensation techniques. Compared with the inductive-peaked cascode technique applied in the SSDA which currently has the highest reported bandwidth, simulation results, based on full foundry transistor models, predict up to 30% improvement in gainbandwidth (GBW) performance for the same active device at the same bias. In addition, the reduction in the length of the input ATL effectively reduces transmission line losses, thereby improving the overall gain performance.