Recent investigations of Field Programmable Gate Array (FPGA)-based time-to-digital converters (TDCs) have predominantly focused on improving the time resolution of the device. However, the monolithic integration of multi-channel TDCs and the achievement of high measurement throughput remain challenging issues for certain applications. In this paper, the potential of the resources provided by the Kintex-7 Xilinx FPGA is fully explored, and a new design is proposed for the implementation of a high performance multi-channel TDC system on this FPGA. Using the tapped-delay-line wave union TDC architecture, in which a negative pulse is triggered by the hit signal propagating along the carry chain, two time measurements are performed in a single carry chain within one clock cycle. The differential non-linearity and time resolution can be significantly improved by realigning the bins. The on-line calibration and on-line updating of the calibration table reduce the influence of variations of environmental conditions. The logic resources of the 6-input look-up tables in the FPGA are employed for hit signal edge detection and bubble-proof encoding, thereby allowing the TDC system to operate at the maximum allowable clock rate of the FPGA and to achieve the maximum possible measurement throughput. This resource-efficient design, in combination with a modular implementation, makes the integration of multiple channels in one FPGA practicable. Using our design, a 128-channel TDC with a dead time of 1.47 ns, a dynamic range of 360 ns, and a root-mean-square resolution of less than 10 ps was implemented in a single Kintex-7 device.Index Terms-Bin realignment, Field programmable gate array (FPGA), measurement throughput, multi-channel time-to-digital converter (TDC), RMS resolution, thermometer-to-binary encoder, time-to-digital converter.