Raman spectroscopy is an equipment that is widely used for classifying chemicals in chemical defense operations. However, the classification performance of Raman spectrum may deteriorate due to dark current noise, background noise, spectral shift by vibration of equipment, spectral shift by pressure change, etc. In this paper, we compare the classification accuracy of various machine learning algorithms including k-nearest neighbor, decision tree, linear discriminant analysis, linear support vector machine, nonlinear support vector machine, and convolutional neural network under noisy and spectral shifted conditions. Experimental results show that convolutional neural network maintains a high classification accuracy of over 95 % despite noise and spectral shift. This implies that convolutional neural network can be an ideal classification algorithm in a real combat situation where there is a lot of noise and spectral shift.