2006
DOI: 10.1111/j.1467-9892.2005.00460.x
|View full text |Cite
|
Sign up to set email alerts
|

A Bayesian Approach to Modelling Graphical Vector Autoregressions

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
27
0

Year Published

2009
2009
2024
2024

Publication Types

Select...
4
2

Relationship

1
5

Authors

Journals

citations
Cited by 34 publications
(27 citation statements)
references
References 33 publications
0
27
0
Order By: Relevance
“…This challenge has been discussed extensively as a model determination problem (see Chickering et al , ; Corander and Villani, ). However, we follow the Bayesian paradigm of Madigan and York (), Giudici and Green () and Dawid and Lauritzen (), which allows us to take into account structure and parameter uncertainty.…”
Section: Bayesian Graphical Vector Autoregressionmentioning
confidence: 99%
See 3 more Smart Citations
“…This challenge has been discussed extensively as a model determination problem (see Chickering et al , ; Corander and Villani, ). However, we follow the Bayesian paradigm of Madigan and York (), Giudici and Green () and Dawid and Lauritzen (), which allows us to take into account structure and parameter uncertainty.…”
Section: Bayesian Graphical Vector Autoregressionmentioning
confidence: 99%
“…In this paper, we propose an identification approach for SVAR models based on a graph representation of the conditional independence among variables (see Pearl, ; Lauritzen and Wermuth, ; Whittaker, ; Wermuth and Lauritzen, ). The graph inference discussed in this paper is in the spirit of Corander and Villani (), but differs substantially from it. A first relevant difference is that our approach considers acyclic graphs, whereas in Corander and Villani () the dependence structures are not acyclic and cannot be used to achieve identification.…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…Our intention is to combine BGN with SVAR, in order to examine interrelationship among monetary policies and macroeconomic performances in Nigeria. However, many previous studies have worked on causal inference using BGN-SVAR in developed countries, studies like Swanson and Granger [11], Demiralp and Hoover [9], Moneta and Spirites [12], Corander and Villani [13] and more recently Ahelegbey et al [6]. The advantage of the BGN-SVAR is that causal influences are tracked down among variables of interest either instantaneously or with time lags using conditional probabilistic inference on the structural model.…”
Section: Introductionmentioning
confidence: 99%