2019
DOI: 10.1016/j.ymssp.2018.08.015
|View full text |Cite
|
Sign up to set email alerts
|

A Bayesian Monte Carlo-based method for efficient computation of global sensitivity indices

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
13
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
10

Relationship

2
8

Authors

Journals

citations
Cited by 59 publications
(14 citation statements)
references
References 27 publications
0
13
0
1
Order By: Relevance
“…But there is another side. Ethical limitations can significantly complicate the model, and since retraining is associated with the excessive complexity of the model used, this risk should be optimized by empirically measuring the probability of retraining (Monte Carlo method) [16].…”
Section: Resultsmentioning
confidence: 99%
“…But there is another side. Ethical limitations can significantly complicate the model, and since retraining is associated with the excessive complexity of the model used, this risk should be optimized by empirically measuring the probability of retraining (Monte Carlo method) [16].…”
Section: Resultsmentioning
confidence: 99%
“…Monte Carlo juga berhasil mengeksploitasi dengan estimasi probabilitas kegagalan kecil dalam praktik teknik dengan memperkirakan indeks Sobol dengan biaya komputasi yang rendah dengan mengembangkan Aplikasi dengan strategi mentransformasikan evaluasi integral menjadi masalah inferensi Bayesian. Sehingga efisiensi dari metode yang baru dikembangkan ini sangat tinggi [19].…”
Section: Pendahuluanunclassified
“…Monte Carlo Method (MCM) constructs a probabilistic model that approximates the performance of the system and performs random experiments on a digital computer [8]. It is very common to calculate the solid volume represented by the boundary with MCM [9,10].…”
Section: Introductionmentioning
confidence: 99%