“…Job index k [ 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 ] Job priority p k [ 30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,…”
Section: Description Symbol Valuementioning
confidence: 99%
“…In a recent study, Bartolini et al introduced the term "green warehousing" (GW) to denote a managerial concept integrating and implementing environmentally friendly operations with the objective of minimizing the energy consumption, energy cost, and GHG emissions of a emissions of a warehouse [3]. The development of GW approaches is also favored by the decreasing costs of smart devices [4], the large availability of distributed sensors [5] and data analytics tools [6], and, in general, advances of information and communication technologies (ICTs) [7]. The results of recent market surveys show that a sustainable approach to warehouse management allows brand fidelity and stakeholder satisfaction to be increased, as well as improving the ability of companies to quickly and flexibly respond to market changes [8].…”
In recent years, the continuous increase of greenhouse gas emissions has led many companies to investigate the activities that have the greatest impact on the environment. Recent studies estimate that around 10% of worldwide CO2 emissions derive from logistical supply chains. The considerable amount of energy required for heating, cooling, and lighting as well as material handling equipment (MHE) in warehouses represents about 20% of the overall logistical costs. The reduction of warehouses’ energy consumption would thus lead to a significant benefit from an environmental point of view. In this context, sustainable strategies allowing the minimization of the cost of energy consumption due to MHE represent a new challenge in warehouse management. Consistent with this purpose, a two-step optimization model based on integer programming is developed in this paper to automatically identify an optimal schedule of the material handling activities of electric mobile MHEs (MMHEs) (i.e., forklifts) in labor-intensive warehouses from profit and sustainability perspectives. The resulting scheduling aims at minimizing the total cost, which is the sum of the penalty cost related to the makespan of the material handling activities and the total electricity cost of charging batteries. The approach ensures that jobs are executed in accordance with priority queuing and that the completion time of battery recharging is minimized. Realistic numerical experiments are conducted to evaluate the effects of integrating the scheduling of electric loads into the scheduling of material handling operations. The obtained results show the effectiveness of the model in identifying the optimal battery-charging schedule for a fleet of electric MMHEs from economic and environmental perspectives simultaneously.
“…Job index k [ 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 ] Job priority p k [ 30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,…”
Section: Description Symbol Valuementioning
confidence: 99%
“…In a recent study, Bartolini et al introduced the term "green warehousing" (GW) to denote a managerial concept integrating and implementing environmentally friendly operations with the objective of minimizing the energy consumption, energy cost, and GHG emissions of a emissions of a warehouse [3]. The development of GW approaches is also favored by the decreasing costs of smart devices [4], the large availability of distributed sensors [5] and data analytics tools [6], and, in general, advances of information and communication technologies (ICTs) [7]. The results of recent market surveys show that a sustainable approach to warehouse management allows brand fidelity and stakeholder satisfaction to be increased, as well as improving the ability of companies to quickly and flexibly respond to market changes [8].…”
In recent years, the continuous increase of greenhouse gas emissions has led many companies to investigate the activities that have the greatest impact on the environment. Recent studies estimate that around 10% of worldwide CO2 emissions derive from logistical supply chains. The considerable amount of energy required for heating, cooling, and lighting as well as material handling equipment (MHE) in warehouses represents about 20% of the overall logistical costs. The reduction of warehouses’ energy consumption would thus lead to a significant benefit from an environmental point of view. In this context, sustainable strategies allowing the minimization of the cost of energy consumption due to MHE represent a new challenge in warehouse management. Consistent with this purpose, a two-step optimization model based on integer programming is developed in this paper to automatically identify an optimal schedule of the material handling activities of electric mobile MHEs (MMHEs) (i.e., forklifts) in labor-intensive warehouses from profit and sustainability perspectives. The resulting scheduling aims at minimizing the total cost, which is the sum of the penalty cost related to the makespan of the material handling activities and the total electricity cost of charging batteries. The approach ensures that jobs are executed in accordance with priority queuing and that the completion time of battery recharging is minimized. Realistic numerical experiments are conducted to evaluate the effects of integrating the scheduling of electric loads into the scheduling of material handling operations. The obtained results show the effectiveness of the model in identifying the optimal battery-charging schedule for a fleet of electric MMHEs from economic and environmental perspectives simultaneously.
“…In the photovoltaic grid-connected inverter control structure, a phase-locked loop (PLL) is used. Several scientific studies have shown further viable options for the PLL approach [34,35]. The authors of [34] introduce the design and implementation of a new programmable phase control unit (PCU) topology for active phased array antennas; the array is based on a hybrid direct digital synthesizer (DDS) phase-lock-loop (PLL) approach.…”
Section: Control Strategy Of Three-phase Photovoltaic Grid-connected mentioning
Photovoltaic grid-connected power generation systems are easily affected by external factors, and their anti-interference performance is poor. For example, changes in illumination and fluctuations in the power grid affect the operation ability of the system. Linear active disturbance rejection control (LADRC) can extract the “summation disturbance” information from the system and eliminate the disturbance at the fastest speed by controlling the signal before it affects the final output of the system. In this paper, an improved linear ADRC based on the principle of deviation control is proposed, and the voltage outer loop is controlled by an improved LADRC. This improved LADRC takes the deviation between each state variable and its observed value as the regulation basis for each state variable of the linear extended state observer (LESO). Based on the analysis of the bode diagram in the frequency domain, it can be concluded that, compared with the unimproved LADRC, the new LADRC has better disturbance rejection performance. The simulation results show that the control performance of the new, improved LADRC is better than that of the unimproved LADRC under different operating conditions, and it has better stability performance and anti-disturbance performance.
“…As it will be explained in the remainder of this section, due to the periodicity of the PLL's output, even if ϕ OUT is greater than ϕ MIN , this does not mean that the phase resolution of the DDS-PLL phase shifter will be less than the one of the DDS. Since in modern phase frequency detectors (PFDs) the phase and frequency mismatch detection are operated by converting an analog input signal into a digital signal, several revised topologies have been proposed to decrease the complexity and power consumption of these DDS-PLLs [15], [19]. In fact, the DDS can be completely replaced by an all-digital PCU that, without any degradation of the PLL performance, feed square waves rather than sine waves to its PFD input.…”
Section: Theory Of Operation Of Dds-pll Phase Shiftersmentioning
The main purpose of this paper is to review the framework behind direct digital synthesizer phase-locked loops (DDS-PLLs), as well as to provide a set of novel techniques that can be used during the development and the deployment of phased arrays based on local oscillator (LO) phase shifting approaches. A beam steering transmitter prototype employing our revised DDS-PLL architecture and the experimental results obtained during its characterization are presented. The main contribution of the proposed implementation consists in showing that the output phase increments of the DDS-PLL are unaffected by the frequency multiplication operated by the PLL. The proposed prototype is centered at 3.350 GHz and allows to independently set the phase of its four LOs at 2.453 GHz with an 8-bit resolution. The DDS-PLL architecture is frequency-independent, and the modular structure of its phase control units allows to achieve different phase resolutions with a very small redesign effort. INDEX TERMS Beam steering transmitter, DDS-PLL, direct digital synthesizer (DDS), phase-locked loop (PLL), phase shifter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.