Virtual reality (VR) is a promising tool and is increasingly used in many different fields, in which virtual walking can be generalized through detailed modeling of the physical environment such as in sports science, medicine and furthermore. However, the visualization of a virtual environment using a head-mounted display (HMD) differs compared to reality, and it is still not clear whether the visual perception works equally within VR. The purpose of the current study is to compare the spatial orientation between real world (RW) and VR. Therefore, the participants had to walk blindfolded to different placed objects in a real and virtual environment, which did not differ in physical properties. They were equipped with passive markers to track the position of the back of their hand, which was used to specify each object’s location. The first task was to walk blindfolded from one starting position to different placed sport-specific objects requiring different degrees of rotation after observing them for 15 s (0°, 45°, 180°, and 225°). The three-way ANOVA with repeated measurements indicated no significant difference between RW and VR within the different degrees of rotation (p > 0.05). In addition, the participants were asked to walk blindfolded three times from a new starting position to two objects, which were ordered differently during the conditions. Except for one case, no significant differences in the pathways between RW and VR were found (p > 0.05). This study supports that the use of VR ensures similar behavior of the participants compared to real-world interactions and its authorization of use.