“…Several mathematical programming modeling approaches consist of single-objective mixed-integer linear programming or MILP (Sadjady and Davoudpour, 2012; Askin et al , 2013; Cortinhal et al , 2015; Santosa and Kresna, 2015; Le et al , 2019), multi-objective mixed-integer linear programming (MOMILP) (Paksoy et al , 2010; Boronoos et al , 2021), normalized normal constraint (Wang et al , 2011), evolutionary multiobjective algorithm (Bhattacharya and Bandyopadhyay, 2010; Harris et al , 2014), weighted sum method (Amin and Zhang, 2013), goal programming (Yaghin et al , 2012; Mohammed and Wang, 2017; Yaghin and Sarlak, 2020), LP-metric (Mohammed and Wang, 2017; Khalilzadeh and Derikvand, 2018), min–max approach (Kannan et al , 2013; Mohammed and Wang, 2017; Olapiriyakul et al , 2019; Jinawat and Buddhakulsomsiri, 2021), ε -constraint (Amin and Zhang, 2013; Jindal and Sangwan, 2017; Mohammed and Wang, 2017; Mohammed et al , 2019) and augmented ε -constraint (Mohebalizadehgashti et al , 2020). In addition, several studies, including that of Liang (2006), Paksoy et al (2012), Pishvaee and Razmi (2012), Amin and Zhang (2013), Dey et al (2015), Gholamian et al (2015), Jindal and Sangwan (2017), Mohammed and Wang (2017), Mohammed et al (2019), Yaghin and Sarlak (2020) and Asim et al (2021), consider uncertainty in their model parameters. For heuristics, widely used methods are simulated annealing (Santosa and Kresna, 2015), Lagrangian relaxation (Sadjady and Davoudpour, 2012; Harris et al , 2014), genetic (Askin et al , 2013), particle swarm (Shankar et al , 2013) and memetic algorithms (Jamshidi et al , 2012).…”