Bio-inspired algorithms provide some notable characteristics, such as stability, scalability, convergence, and adaptability, which explains the reason why many researchers have attempted to apply bio-inspired algorithms to various kinds of engineering problems. In this paper, we propose a fair resource allocation method in wireless networks, which is inspired by the frogs' calling behavior algorithm. Because the frogs' calling behavior algorithm shows strict de-synchronization of the calling phase and adaptivity in the dynamically changing environment, it is suitable for nodes to achieve fair resource allocation in time-division multiple access (TDMA)-based wireless networks. The analysis of the proposed algorithm verifies the convergence criteria. The simulation results show that the proposed algorithm achieves strict de-synchronization for their phase-coupled oscillators and balanced distribution over all nodes, and thus enables the fair and distributed resource allocation over all nodes in a TDMA-based wireless network even with dynamically changing network topology. INDEX TERMS Bio-inspired, fair resource allocation, de-synchronization, frogs' calling behavior.