We previously demonstrated that protein kinase C-δ (PKCδ) is critical for immunity against Listeria monocytogenes, Leishmania major, and Candida albicans infection in mice. However, the functional relevance of PKCδ during Mycobacterium tuberculosis (Mtb) infection is unknown. PKCδ was significantly upregulated in whole blood of patients with active tuberculosis (TB) disease. Lung proteomics further revealed that PKCδ was highly abundant in the necrotic and cavitory regions of TB granulomas in multidrug-resistant human participants. In murine Mtb infection studies, PKCδ−/− mice were highly susceptible to tuberculosis with increased mortality, weight loss, exacerbated lung pathology, uncontrolled proinflammatory cytokine responses, and increased mycobacterial burdens. Moreover, these mice displayed a significant reduction in alveolar macrophages, dendritic cells, and decreased accumulation of lipid bodies (lungs and macrophages) and serum fatty acids. Furthermore, a peptide inhibitor of PKCδ in wild-type mice mirrored lung inflammation identical to infected PKCδ−/− mice. Mechanistically, increased bacterial growth in macrophages from PKCδ−/− mice was associated with a decline in killing effector functions independent of phagosome maturation and autophagy. Taken together, these data suggest that PKCδ is a marker of inflammation during active TB disease in humans and required for optimal macrophage killing effector functions and host protection during Mtb infection in mice.