That research was based on producing and studying a composite material formed by mortar (cement, sand, and water) with the addition of a polymer (tire residue) in order to minimize construction costs, environmental and public health problems, caused by incorrect disposal of waste tires in the city of Açailândia, Maranhão, Brazil. Six cylindrical specimens were produced in order to outline the sediment, three of which were reinforced with 70g of rubber, processed with 20228g of cement, 2212g of sand, and 1.5 liters of water. The other three only with cement sand and water. Abrasion and compression wear tests were performed to characterize the mortar in the hardened state. For compression testing, a hydraulic press was used in order to measure the mechanical strength of traditional mortar and mortar with the addition of tire rubber. The results showed the potential effectiveness of the mortar developed with the cement, sand, and water compound that had the same characteristics as the traditional mortar mixture only with the polymer incorporation differential. In the compressive strength test, the composite presented a resistance higher than the minimum indicated for the internal and external coating of the strokes with the rubber aggregate (NBR-7215), being verified its potential as an insulating material, resistance of the weathering and preservation of the ambient temperature (NBR-13278), so this composite material met the criteria of being a sustainable option for both civil construction and the environment.