The aim of the present study was to investigate the effect and therapeutic potential of baicalin in breast cancer. Baicalin is used to treat inflammatory diseases. The effects of baicalin were assessed in breast cancer MCF-7 and MDA-MB-231 cells, and human breast cancer xenograft mice. Cells were treated with 0, 20 or 30 µM baicalin for 48 h, while xenograft mice were treated with intraperitoneal injection of 0, 100 or 200 mg/kg baicalin for 30 days. The results demonstrated that treatment with baicalin dose-dependently suppressed breast cancer cell invasion, migration and proliferation, and also induced G1/S-phase cell cycle arrest in vitro and in vivo. Baicalin alleviated inflammation injury and inhibited the secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, thus suppressing nuclear factor (NF)-ĸB-p65 activation via inhibition of IĸB kinase. Investigation of the mechanism underlying baicalin activity indicated that it inhibited protein expression of NF-ĸB-p65, leading to NF-ĸB-induced increased expression of CCND1, BCL2, BIRC2 and BIRC3, thus inhibiting cell proliferation, invasion and migration and suppressing anti-apoptotic factors in vitro and in vivo. In addition, baicalin did not affect non-tumorigenic normal breast epithelial cells. These results indicate that baicalin may exert therapeutic effects in breast cancer.