Quantum cryptography has emerged as a promising paradigm for secure communication, leveraging the fundamental principles of quantum mechanics to guarantee information confidentiality and integrity. In recent years, the field of quantum cryptography has witnessed remarkable advancements, and the integration of machine learning techniques has further accelerated its progress. This research paper presents a comprehensive review of the latest developments in quantum cryptography, with a specific focus on the utilization of machine learning algorithms to enhance its capabilities. The paper begins by providing an overview of the principles underlying quantum cryptography, such as quantum key distribution (QKD) and quantum secure direct communication (QSDC). Subsequently, it highlights the limitations of traditional quantum cryptographic schemes and introduces how machine learning approaches address these challenges, leading to improved performance and security. To illustrate the synergy between quantum cryptography and machine learning, several case studies are presented, showcasing successful applications of machine learning in optimizing key aspects of quantum cryptographic protocols. These applicatiocns encompass various tasks, including error correction, key rate optimization, protocol efficiency enhancement, and adaptive protocol selection. Furthermore, the paper delves into the potential risks and vulnerabilities introduced by integrating machine learning with quantum cryptography. The discussion revolves around adversarial attacks, model vulnerabilities, and potential countermeasures to bolster the robustness of machine learning-based quantum cryptographic systems. The future prospects of this combined field are also examined, highlighting potential avenues for further research and development. These include exploring novel machine learning architectures tailored for quantum cryptographic applications, investigating the interplay between quantum computing and machine learning in cryptographic protocols, and devising hybrid approaches that synergistically harness the strengths of both fields. In conclusion, this research paper emphasizes the significance of machine learning-enhanced advancements in quantum cryptography as a transformative force in securing future communication systems. The paper serves as a valuable resource for researchers, practitioners, and policymakers interested in understanding the state-of-the-art in this multidisciplinary domain and charting the course for its future advancements.