Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Smart sensors and networks have spread worldwide over the past few decades. In the industry field, these concepts have found an increasing quantity of applications. The omnipresence of smart sensor networks and smart devices, especially in the industrial world, has contributed to the emergence of the concept of Industry 4.0. In a world where everything is interconnected, communication among smart devices is critical to technological development in the field of smart industry. To improve communication, many engineers and researchers implemented methods to standardize communication along the various levels of the ISO-OSI model, from hardware design to the implementation and standardization of different communication protocols. The objective of this paper is to study and implement an unconventional type of communication, exploiting acoustic wave propagation on metallic structures, starting from the state of the art, and highlighting the advantages and disadvantages found in existing literature, trying to overcome them and describing the progress beyond the state of the art. The proposed application for acoustic communication targets the field of smart industries, where implementing signal transmission via wireless or wired methods is challenging due to interference from the widespread presence of metallic structures. This study explores an innovative approach to acoustic communication, with a particular focus on the physical challenges related to acoustic wave propagation. Additionally, communication performance is examined in terms of noise rejection, analyzing the impact of injected acoustic noise on communication efficiency.
Smart sensors and networks have spread worldwide over the past few decades. In the industry field, these concepts have found an increasing quantity of applications. The omnipresence of smart sensor networks and smart devices, especially in the industrial world, has contributed to the emergence of the concept of Industry 4.0. In a world where everything is interconnected, communication among smart devices is critical to technological development in the field of smart industry. To improve communication, many engineers and researchers implemented methods to standardize communication along the various levels of the ISO-OSI model, from hardware design to the implementation and standardization of different communication protocols. The objective of this paper is to study and implement an unconventional type of communication, exploiting acoustic wave propagation on metallic structures, starting from the state of the art, and highlighting the advantages and disadvantages found in existing literature, trying to overcome them and describing the progress beyond the state of the art. The proposed application for acoustic communication targets the field of smart industries, where implementing signal transmission via wireless or wired methods is challenging due to interference from the widespread presence of metallic structures. This study explores an innovative approach to acoustic communication, with a particular focus on the physical challenges related to acoustic wave propagation. Additionally, communication performance is examined in terms of noise rejection, analyzing the impact of injected acoustic noise on communication efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.