This paper presents a hardware emulator of microelectromechanical systems (MEMS) vibratory gyroscopes that can be used for characterization and verification of control/interface electronics by means of hardware-in-the-loop testing, thus speeding up design cycles by decoupling these tasks from the often longer MEMS design and fabrication cycles. The easily re-configurable hardware emulator is completely synthesized on a field-programmable gate array board. The emulator is shown to successfully model the Coriolis effect along with the prominent error sources present in typical MEMS gyroscopes, namely, quadrature error, spring nonlinearity, and thermo-mechanical, electronic, and environmental noise. Preliminary experimental results characterizing the noise and nonlinearity models based on a prototype with user-controllable device parameters synthesized on the Xilinx Zynq®-7020 SoC (Digilent ZYBO Z7 board) are presented.