We present a novel locking scheme for active length-stabilization and frequency detuning of a cavity optomechanical device based on the optical spring effect. The error signal is generated by utilizing the position measurement of a thermally driven intra-cavity nanomechanical device and employing its detuning-dependent frequency shift caused by the dispersive coupling to the cavity field. The scheme neither requires external modulation of the laser or the cavity nor does it demand for additional error signal readout, rendering its technical implementation rather simple for a large variety of existing optomechanical devices. Specifically, for large-linewidth microcavities or in situations where other locking schemes appear unfavorable conceptually or are hard to realize technically, the optical spring lock represents a potential alternative for stabilizing the cavity length. We explain the functional principle of the lock and characterize its performance in terms of bandwidth and gain profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.