This paper proposes an optimisation-based framework to tackle long-term centralised planning problems of multi-sector, integrated energy systems including electricity, hydrogen, natural gas, synthetic methane and carbon dioxide. The model selects and sizes the set of power generation, energy conversion and storage as well as carbon capture technologies minimising the cost of supplying energy demand in the form of electricity, hydrogen, natural gas or synthetic methane across the power, heating, transportation and industry sectors whilst accounting for policy drivers, such as energy independence, carbon dioxide emissions reduction targets, or support schemes. The usefulness of the model is illustrated by a case study evaluating the potential of sector coupling via power-togas and carbon capture technologies to achieve deep decarbonisation targets in the Belgian context. Results, on the one hand, indicate that power-togas can only play a minor supporting role in cross-sector decarbonisation strategies in Belgium, as electrolysis plants are deployed in moderate quantities whilst methanation plants do not appear in any studied scenario. On the other hand, given the limited renewable potential, post-combustion and direct air carbon capture technologies clearly play an enabling role in any decarbonisation strategy, but may also exacerbate the dependence on fossil fuels.