Abstract:In this paper, we review past (including very recent) research considerations in using reinforcement learning (RL) to solve electric power system decision and control problems. The RL considerations are reviewed in terms of specific electric power system problems, type of control and RL method used. We also provide observations about past considerations based on a comprehensive review of available publications. The review reveals the RL is considered as viable solutions to many decision and control problems across different time scales and electric power system states. Furthermore, we analyse the perspectives of RL approaches in light of the emergence of new-generation, communications, and instrumentation technologies currently in use, or available for future use, in power systems. The perspectives are also analysed in terms of recent breakthroughs in RL algorithms (Safe RL, Deep RL and path integral control for RL) and other, not previously considered, problems for RL considerations (most notably restorative, emergency controls together with so-called system integrity protection schemes, fusion with existing robust controls, and combining preventive and emergency control).
In this paper, we consider the batch mode reinforcement learning setting, where the central problem is to learn from a sample of trajectories a policy that satisfies or optimizes a performance criterion. We focus on the continuous state space case for which usual resolution schemes rely on function approximators either to represent the underlying control problem or to represent its value function. As an alternative to the use of function approximators, we rely on the synthesis of “artificial trajectories” from the given sample of trajectories, and show that this idea opens new avenues for designing and analyzing algorithms for batch mode reinforcement learning.
This paper provides an analysis of the tradeoff between asymptotic bias (suboptimality with unlimited data) and overfitting (additional suboptimality due to limited data) in the context of reinforcement learning with partial observability. Our theoretical analysis formally characterizes that while potentially increasing the asymptotic bias, a smaller state representation decreases the risk of overfitting. This analysis relies on expressing the quality of a state representation by bounding L 1 error terms of the associated belief states. Theoretical results are empirically illustrated when the state representation is a truncated history of observations, both on synthetic POMDPs and on a large-scale POMDP in the context of smartgrids, with real-world data. Finally, similarly to known results in the fully observable setting, we also briefly discuss and empirically illustrate how using function approximators and adapting the discount factor may enhance the tradeoff between asymptotic bias and overfitting in the partially observable context. 1 arXiv:1709.07796v2 [stat.ML]
This paper studies the influence of apoptosis in the dynamics of the HIV infection. A new modeling of the healthy CD4+ T-cells activation-induced apoptosis is used. The parameters of this model are identified by using clinical data generated by monitoring patients starting Highly Active Anti-Retroviral Therapy (HAART). The sampling of blood tests is performed to satisfy the constraints of dynamical system parameter identification. The apoptosis parameter, which is inferred from clinical data, is then shown to play a key role in the early diagnosis of immunological failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.