Promoting the diffusion of remediation technologies is an attractive solution to environmental protection and urban sustainability challenges. To better understand technology diffusion, we reviewed the engineering practices of cement kiln co-processing (CKC) of contaminated soil and obtained diffusion parameters using the Bass model in three provinces of China. Our results show that CKC has been adopted for the disposal of multiple contaminants and that the optimal feed rate of contaminated soil is 4%–5%. The obtained diffusion parameters can be used to analyze and predict CKC diffusion. Driving factors analysis suggest that CKC diffusion is regulation-driven and obeys the S-curve pattern. Policies at the national level shape the basic pattern of the diffusion curve, while local policies, market scales, and contaminant types produce variations in diffusion rates across provinces. Results also reveal that the co-processing quota management on contaminated soil has little impact on CKC adoption. This study provides insights into contaminated soil remediation technology diffusion and the effectiveness of environmental policy implementation at home and abroad.