2015
DOI: 10.1016/j.jmva.2015.06.001
|View full text |Cite
|
Sign up to set email alerts
|

A class of multivariate copulas based on products of bivariate copulas

Abstract: International audienceCopulas are a useful tool to model multivariate distributions. While there exist various families of bivariate copulas, much fewer has been done when the dimension is higher. In this paper we propose a class of multivariate copulas based on products of transformed bivariate copulas. No constraints on the parameters refrain the applicability of the proposed class. Furthermore the analytical forms of the copulas within this class allow to naturally associate a graphical structure which help… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
14
0

Year Published

2017
2017
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 23 publications
(14 citation statements)
references
References 19 publications
0
14
0
Order By: Relevance
“…This paper adapts the aforementioned Greenwald and Khanna algorithm (Greenwald and Khanna, 2001) to construct an alternative bivariate data summary, returning queries to the empirical copula function with guaranteed error bounds. Whilst the paper doesn't directly extend the summary to higher dimensions, one can construct models of dependence for such multidimensional data using sets of pair-wise copulas (Aas et al, 2009;Mazo et al, 2015). Therefore, approximations to such a copula can be found by using the -accurate bivariate copula functions considered here.…”
Section: Introductionmentioning
confidence: 99%
“…This paper adapts the aforementioned Greenwald and Khanna algorithm (Greenwald and Khanna, 2001) to construct an alternative bivariate data summary, returning queries to the empirical copula function with guaranteed error bounds. Whilst the paper doesn't directly extend the summary to higher dimensions, one can construct models of dependence for such multidimensional data using sets of pair-wise copulas (Aas et al, 2009;Mazo et al, 2015). Therefore, approximations to such a copula can be found by using the -accurate bivariate copula functions considered here.…”
Section: Introductionmentioning
confidence: 99%
“…As an interesting topic for further research in the directions of the construction and characterization of bivariate copulas as realized in this paper, one can consider the approach to construct n-ary copulas (with n > ) proposed and studied in [36] by functions f , f , . .…”
Section: Discussionmentioning
confidence: 99%
“…It is an asymmetric copula presented by Liebscher (2008),0988 and it is also considered by Mazo et al (2015) and Durante and Sempi (2016) recently. Furthermore, for each i = 1, .…”
Section: Asymmetric Copulas In Liebscher (2008) and Max-copula In Zhao Andmentioning
confidence: 99%
“…For example, Genest and Rivest (2001), Klement et al (2005), Morillas (2005), Alvoni et al (2009), Durante et al (2010), and Valdez and Xiao (2011) applied a distortion function to copulas for constructing new copulas. Xie et al (2019) transformed a given copula C with two distortion functions, Liebscher (2008) and Mazo et al (2015) applied a series of distortion functions to multiple initial copulas for constructing a family of asymmetric copulas, and Lin et al (2018) applied the stochastic distortion to obtain new copulas with financial background. Based on a straightforward "pairwise max" rule, Zhao and Zhang (2018) utilized power functions to two existing copulas and presented the max-copula.…”
Section: Introductionmentioning
confidence: 99%