2007
DOI: 10.1016/j.chaos.2007.01.008
|View full text |Cite
|
Sign up to set email alerts
|

A classification of the projective lines over small rings

Abstract: A compact classification of the projective lines defined over (commutative) rings (with unity) of all orders up to thirty-one is given. There are altogether sixty-five different types of them. For each type we introduce the total number of points on the line, the number of points represented by coordinates with at least one entry being a unit, the cardinality of the neighbourhood of a generic point of the line as well as those of the intersections between the neighbourhoods of two and three mutually distant po… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

1
63
0
7

Year Published

2007
2007
2017
2017

Publication Types

Select...
6
1

Relationship

3
4

Authors

Journals

citations
Cited by 27 publications
(71 citation statements)
references
References 15 publications
1
63
0
7
Order By: Relevance
“…(1, 0), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,10), (1,14), (1,15), (0, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7,1), (8,1), (10,1), (14,1), (15,1), (3,4), (3,10), (3,14), (5,4), (5,10), (5,14), (6,4), (6,10), (6,14).…”
unclassified
See 1 more Smart Citation
“…(1, 0), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,10), (1,14), (1,15), (0, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7,1), (8,1), (10,1), (14,1), (15,1), (3,4), (3,10), (3,14), (5,4), (5,10), (5,14), (6,4), (6,10), (6,14).…”
unclassified
“…As demonstrated, for example, in Ref. 6 (Table 3), the projective line P 1 (GF (2)[x]/ x 2 ) features six points any of which is neighbor to one and distant to the remaining four points, comprising thus three pairs of neighbors. In the set of Pauli operators this configuration is present as the sextuple of operators commuting with a given operator; taking the latter to be, e. g., C 13 , the six operators in question, as readily discerned from Table 2, are {C 4 , C 5 ; C 7 , C 10 ; C 14 , C 15 }, which indeed form three pairs of commuting members (these pairs being separated from each other by a semicolon).…”
mentioning
confidence: 99%
“…Проверяя сначала условие совместности (1), а затем, группируя допустимые пары, лево-пропорциональные единице, в классы эквивалентности (каждый содержит шесть элементов), найдем, что прямая 1) P 1 M 2 GF (2) содержит в общей сложности 35 точек со следующими представителями в каждом классе эквивалентности (см. работы [6]- [8] относительно деталей данной методологии, а также разнообразных примеров, иллюстрирующих метод проективной прямой над кольцом):…”
Section: проективные кривые над кольцом включающие в себя два-кубитыunclassified
“…(1, 1), (1,2), (1,9), (1,11), (1,12), (1,13), (1,0), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,10), (1,14), (1,15), (0, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7,1), (8,1), (10,1), (14,1), (15,1), (3,4), (3,10), (3,14), (5,4), (5,10), (5,14), (6,…”
Section: проективные кривые над кольцом включающие в себя два-кубитыunclassified
See 1 more Smart Citation