Abstract. In the period
between 9 and 11 July 2014, a friagem event reached the Amazon region.
On 11 July, the southwest flow related to the friagem
converged with the easterly winds in the central Amazon. The interaction between these two distinct air masses
formed a convection band, which intensified over the Manaus region and the Amazon Tall Tower Observatory (ATTO) site. The
satellite images show the evolution of convective activity on 11 July, which led to 21 mm of precipitation at
the ATTO site. Moreover, the arrival of the friagem caused a sudden drop in temperature and a predominance of southerly
winds, which could be seen in Porto Velho between 7 and 8 July and in Manaus and the ATTO site from 9 to
11 July. The results of ERA-Interim reanalysis and Brazilian developments on the Regional Atmospheric Modeling System
(BRAMS) simulations show that this friagem event coming from the southwest, carries a mass of air with higher O3
and NO2 mixing ratios and lower CO mixing ratio compared to the air masses
present in the central Amazon. At Lake Balbina, the friagem intensifies the local circulations, such as the breeze phenomena.
In the Manaus region and at the ATTO site, the main effects of the friagem event are a decrease in the incoming solar radiation
(due to intense cloud formation), a large temperature drop and a distinct change in surface O3 and CO2
mixing ratios. As the cold air of the friagem was just in the lower
500 m the most probable cause of this change is that
a cold pool above the forest prevented vertical mixing causing accumulation of CO2 from respiration and very
low O3 mixing ratio due to photochemistry reduction and limited mixing within the boundary layer.