This paper presents the first results of the global long‐term potential energy and mean potential energy per unit mass associated to wave activity (WA) in the lower and middle stratosphere, obtained from Global Positioning System radio occultation (GPS‐RO) temperature profiles, retrieved during the last 5 years from the CHAMP (CHAllenging Minisatellite Payload) satellite. We excluded temperature variations corresponding to the wavelike character of the Quasi Biennial oscillation (QBO). Possible limitations and distortions expected from our analysis are pointed out. Systematic annual and interannual features, clearly evidenced through 5 years of observations as a function of height, latitude and time are shown. We confirm some previously reported characteristics, in particular interannual requiring a sufficiently long period of observation, in addition to others not reported yet. In particular, a general stronger (weaker) wave activity is observed associated to apparent vertical wavelengths longer (shorter) than 4 km. The tropical/extratropical signatures decrease/increase with increasing altitude. At equatorial latitudes, WA interannual enhancements, related to QBO, are observed just below zonal wind zero contours corresponding to westerly shears. A significant decrease of WA is seen where the zonal wind is minimum. Both at equatorial and middle latitudes, an increased WA appears close above the TP, following its annual height oscillation and above 30 km height. At higher latitudes, a systematic annual variation of WA is observed, exhibiting stronger enhancements in winter SH respect to NH, but in SH, taking place during late winter and early spring. This enhanced WA, associated during 2002 to the stratospheric warming observed in that year, appears here as a systematic annual stratospheric feature. Its intensity increases with altitude, from 25 to 35 km. Inertio‐gravity waves generated by geostrophic adjustment during the maximum of the southern polar vortex (polar night jet) between late August and mid‐ September, could constitute a main source of this WA enhancement.
Originally published as:Schmidt, T., Alexander, P., de la Torre, A. (2016): Stratospheric gravity wave momentum flux from radio occultations. Abstract Triples of GPS radio occultation (RO) temperature data are used to derive horizontal and vertical gravity wave (GW) parameters in the stratosphere between 20 km and 40 km from which the vertical flux of horizontal momentum is determined. Compared to previous studies using RO data, better limiting values for the sampling distance (Δd ≤250 km) and the time interval (Δt ≤15 min) are used. For several latitude bands the mean momentum fluxes (MFs) derived in this study are considerably larger than MF from other satellite missions based on horizontal wavelengths calculated between two adjacent temperature profiles along the satellite track. Error sources for the estimation of MF from RO data and the geometrical setup for the applied method are investigated. Another crucial issue discussed in this paper is the influence of different background separation methods to the final MF. For GW analysis a measured temperature profile is divided into a fluctuation and a background and it is assumed that the fluctuation is caused by GWs only. For the background separation, i.e., the detrending of large-scale processes from the measured temperature profile, several methods exist. In this study we compare different detrending approaches and for the first time an attempt is made to detrend RO data with ERA-Interim data from the European Centre for Medium-Range Weather Forecasts. We demonstrate that the horizontal detrending based on RO data and ERA-Interim gives more consistent results compared with a vertical detrending.
Capsule summaryThe SOUTHTRAC-GW airborne mission explored the dynamics of gravity waves in the region of the Southern Andes and Antarctic Peninsula during the extraordinary southern hemisphere SSW of September 2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.