[1] The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument measured stratospheric temperatures and trace species concentrations with high precision and spatial resolution during two missions. The measuring technique is infrared limb-sounding of optically thin emissions. In a general approach, we investigate the applicability of the technique to measure gravity waves (GWs) in the retrieved temperature data. It is shown that GWs with wavelengths of the order of 100-200 km horizontally can be detected. The results are applicable to any instrument using the same technique. We discuss additional constraints inherent to the CRISTA instrument. The vertical field of view and the influence of the sampling and retrieval imply that waves with vertical wavelengths $3-5 km or larger can be retrieved. Global distributions of GW fluctuations were extracted from temperature data measured by CRISTA using Maximum Entropy Method (MEM) and Harmonic Analysis (HA), yielding height profiles of vertical wavelength and peak amplitude for fluctuations in each scanned profile. The method is discussed and compared to Fourier transform analyses and standard deviations. Analysis of data from the first mission reveals large GW amplitudes in the stratosphere over southernmost South America. These waves obey the dispersion relation for linear two-dimensional mountain waves (MWs). The horizontal structure on 6 November 1994 is compared to temperature fields calculated by the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) mesoscale model (MM5). It is demonstrated that precise knowledge of the instrument's sensitivity is essential. Particularly good agreement is found at the southern tip of South America where the MM5 accurately reproduces the amplitudes and phases of a large-scale wave with 400 km horizontal wavelength. Targeted ray-tracing simulations allow us to interpret some of the observed wave features. A companion paper will discuss MWs on a global scale and estimates the fraction that MWs contribute to the total GW energy (Preusse et al., in preparation, 2002).
Spaceborne lidar measurements from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) are used to provide a vortex-wide perspective of the 2009–2010 Arctic PSC (polar stratospheric cloud) season to complement more focused measurements from the European Union RECONCILE (reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) field campaign. The 2009–2010 Arctic winter was unusually cold at stratospheric levels from mid-December 2009 until the end of January 2010, and was one of only a few winters from the past fifty-two years with synoptic-scale regions of temperatures below the frost point. More PSCs were observed by CALIPSO during the 2009–2010 Arctic winter than in the previous three Arctic seasons combined. In particular, there were significantly more observations of high number density NAT (nitric acid trihydrate) mixtures (referred to as Mix 2-enh) and ice PSCs. We found that the 2009–2010 season could roughly be divided into four periods with distinctly different PSC optical characteristics. The early season (15–30 December 2009) was characterized by patchy, tenuous PSCs, primarily low number density liquid/NAT mixtures. No ice clouds were observed by CALIPSO during this early phase, suggesting that these early season NAT clouds were formed through a non-ice nucleation mechanism. The second phase of the season (31 December 2009–14 January 2010) was characterized by frequent mountain wave ice clouds that nucleated widespread NAT particles throughout the vortex, including Mix 2-enh. The third phase of the season (15–21 January 2010) was characterized by synoptic-scale temperatures below the frost point which led to a rare outbreak of widespread ice clouds. The fourth phase of the season (22–28 January) was characterized by a major stratospheric warming that distorted the vortex, displacing the cold pool from the vortex center. This final phase was dominated by STS (supercooled ternary solution) PSCs, although NAT particles may have been present in low number densities, but were masked by the more abundant STS droplets at colder temperatures. We also found distinct variations in the relative proportion of PSCs in each composition class with altitude over the course of the 2009–2010 Arctic season. Lower number density liquid/NAT mixtures were most frequently observed in the lower altitude regions of the clouds (below ~18–20 km), which is consistent with CALIPSO observations in the Antarctic. Higher number density liquid/NAT mixtures, especially Mix 2-enh, were most frequently observed at altitudes above 18–20 km, primarily downstream of wave ice clouds. This pattern is consistent with the conceptual model whereby low number density, large NAT particles are precipitated from higher number density NAT clouds (i.e. mother clouds) that are nucleated downstream of mountain wave ice clouds
Abstract. Polar stratospheric clouds (PSCs) at 22-26 km were observed over the Norwegian mountains by airborne lidar on January 15, 1995. Simulations using a mesoscale model reveal that they were caused by mountain-induced gravity waves. The clouds had a highly detailed filamentary structure with bands as thin as 100 m in the vertical, and moved insignificantly over 4 hours, suggesting them to be quasi-stationary. The aircraft flight path was parallel or close to parallel with the wind at cloud level. Such a quasi-Lagrangian observation, together with the presence of distinct aerosol layers, •11ows •n air parcel trajectory through the cloud to be constructed and enables the lidar images to be simulated using a microphysical box model and light scattering calculations. The results yield detailed information about particle evolution in PSCs and suggest that water ice nucleated directly from liquid HNO3/H2SO4/H20 droplets as much as 4 K below the ice frost point. The observation of solid nitric acid hydrate particles downwind of the mountains shows that such mesoscale events can generate solid PSC particles that can persist on the synoptic scale. We also draw attention to the possible role of mesoscale PSCs in chlorine activation and subsequent ozone destruction.
[1] Ten years of high-resolution radiosonde data are contrasted with fifteen years of ECMWF reanalysis (ERA) data to explore the tropopause region above two midlatitude stations (Munich and Stuttgart) in Southern Germany. We present time-averaged vertical profiles of several meteorological parameters relative to the tropopause. A strong mean inversion at the tropopause is evident from the radiosonde profiles with a vertical extension of about 2 km and a temperature increase of about 4 K. The impact of the tropopause definition on the strength of this inversion is discussed as well as the relevance of baroclinic eddies in forming it. The climatological profiles for Munich and Stuttgart do not differ significantly.
During the Saharan Mineral Dust Experiment (SAMUM) conducted in summer 2006 in southeast Morocco, the complex refractive index of desert dust was determined from airborne measurements of particle size distributions and aerosol absorption coefficients at three different wavelengths in the blue (467 nm), green (530 nm) and red (660 nm) spectral regions. The vertical structure of the dust layers was analysed by an airborne high spectral resolution lidar (HSRL). The origin of the investigated dust layers was estimated from trajectory analyses, combined with Meteosat 2nd Generation (MSG) scenes and wind field data analyses. The real part n of the dust refractive index was found almost constant with values between 1.55 and 1.56, independent of the wavelength. The values of the imaginary part k varied between the blue and red spectral regions by a factor of three to ten depending on the dust source region. Absolute values of k ranged from 3.1 × 10−3 to 5.2 × 10−3 at 450 nm and from 0.3 × 10−3 to 2.5 × 10−3 at 700 nm. Groupings of k values could be attributed to different source regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.