This article mainly studies the selection of the matching area in gravity matching navigation systems of underwater vehicles. Firstly, we comprehensively consider 14 types of gravity field feature parameters, and a new gravity field feature parameters selection method is proposed based on feature selection principles and support vector machine algorithms. Secondly, according to the new gravity field feature parameters selection method, the five feature parameters, including range, pooling difference, standard deviation of gravity anomaly, roughness, and correlation coefficient, were selected from the 14 gravity field features parameters. The selected five feature parameters are integrated using SVM, and a classification model is constructed with carefully chosen training and testing sets and parameters for validation. Based on the experimental results, compared to the pre-calibrated results, the classification accuracy of the testing set reaches 91%, demonstrating the effectiveness of the gravity field feature parameter selection method in distinguishing between the suitable and the unsuitable areas. Finally, this method is applied to another area, and we carried out navigation experiments in the areas that were suitable areas in all four directions, as not all areas were suitable in four directions. The results showed that the areas that were suitable in all four directions provided better matching effects, the mean positioning accuracy was less than 100 m, and the accuracy was more than 90%. In path planning, priority can be given to areas that are suitable in all four directions.